

2022-2023

Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya, Dharmabad-431809

Pro-forma for program and course outcomes (2.6.1)				
Name of Teacher: Mr. K. B. Gacche	Department: Mathematics			
Program: BSc FY Sem-I Subject: Mathematics	Course Code: CCM-1 Section A			
Paper Title: Calculus-I (Differential Calculus)	Paper No.: I			

Unit	Unit Name	Topics	Unit-wise Outcome
No.			
1	Differentiation	Derivability and derivative, derived function, derivability implying continuity, geometrical interpretation of a derivative, derivatives of hyperbolic functions, derivatives of inverse hyperbolic functions, Higher order derivatives, calculation of the nth derivative, determination of n th derivative of rational functions, nth derivatives of the products of the powers of sines and cosines, Leibnitz theorem.	Student will be able To understand conceptof limit, continuity, derivative of single variable functions. Student can find the higher order derivatives of product of functions.
2	Expansion of functions, Tangents and Normals	Maclaurin's theorem, Taylor's theorem, Equations of the tangent and normal, Angle of intersection of two curves, length of the tangent, normal, sub-tangent, sub-normal, pedal equations.	Student can expand functions in terms of infinite series. Student can find equation of tangent, normal and length of tangent, normal and are able to solve examples based on this
3	Mean Value Theorems	Rolle's Theorem, Lagrange's mean value theorem, Meaning of sign of derivative, Graphs of hyperbolic functions, Cauchy's mean value theorem, Generalized mean value theorems (Taylor's theorem, Maclaurin's theorem).	Student understands the concept of Mean Value Theorems. Student can use the results to solve the examples.
4	Partial Differentiations	Introduction, Functions of two variables, Neighborhood of a point (a,b), Limit and Continuity, Partial derivatives, Geometrical Interpretation, Homogeneous functions, Euler'sTheorem on homogeneous function and corollary, Theorems on total differentials, Equality of $f_{xy}(a, b)$ and $f_{yx}(a, b)$, Equality of f_{xy} and f_{yx} , Taylors theorem for functions of two variables.	Student understands concept of limit, continuity and differentiation of two variable functions. Student can use the results to solve examples.

Course Outcome:Student learned elementary knowledge of differential calculus such as define terms, explain concepts and methods and applies to solve examples.

Program Outcome: Students learned elementary knowledge of Calculus (Differential& Integral). They also learned Differentiation, expansions of functions, mean value theorems, partial differentiation. Student learned interactive computation, Plotting of Graphs using MATLAB Software.

Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya, Dharmabad-431809 **Pro-forma for program and course outcomes (2.6.1)**

Name of Teacher: Mr. K. B. Gacche **Department: Mathematics** Program: BSc FY Sem-I Subject: Mathematics Course Code: CCM-1 Section B Paper Title: Algebra and Trigonometry Paper No.: II

Unit No.	Unit Name	Topics	Unit-wise Outcome
1	Matrices	Matrix, Different Types of Matrices, Equality of Matrices, Addition (Sum) of Two Matrices, Multiplication of Two Matrices, Properties of Matrix Multiplication, Positive Integral Powers of a Matrix, Transpose of a Matrix, Conjugate of a Matrix, Transposed Conjugate of a Matrix, Determinant of a Square Matrix, Minor of an Element, Inverse of a Square Matrix, Singular and Non-singular Matrix, Orthogonal Matrix, Unitary Matrix.	Student can Add, Subtract and Multiply two matrices. Student recognizes the different types of Matrices. Student will be able to find the Inverse of invertible Matrices,Minor of element.
2	Rank of a Matrix	Minor of Order k of a Matrix, Rank of a Matrix, elementary Row and Column Operations, The Inverse of an elementary Operation, Row and ColumnEquivalent, Equivalent Matrices, Working Procedure for Finding Rank Using ElementaryOperations, Row- Echelon Matrix, Row Rank and Column Rank of a Matrix.	Student will be able to determine the row rank,rank of a matrix. Student can transform matrix to Row Echelon form.
3	Linear Equations	Linear Equations, Equivalent Systems, System of Homogeneous Equations. Characteristic Roots and Characteristic Vectors : Definitions, To Find Characteristic Vectors, Cayley-Hamilton Theorem.	Student Solves the System of Linear Equations. Student will be able to find the Characteristic Roots and Characteristic Vectors of a Matrix.
4	Trigonometry	Complex Quantities, DeMoivre's Theorem, Expansions of sines and cosines; Expansions of the sine and cosine of an Angle in Series of Ascending Powers of the Angle, Expansionsof the sines and cosines of Multiple Angles, and of Powers of sines and cosines, Exponential Series for Complex Quantities, Circular Functions for Complex Angles, HyperbolicFunctions, Inverse Circular Functions, Inverse Hyperbolic Functions.	Student can expand sines and cosines of an angle in Series of Ascending Powers of the Angle. Student can find expansions of the sines and cosines of Multiple Angles. Knows about Hyperbolic functions.

Course Outcome: Student got elementary knowledge of Matrices, Complex Numbers, and Trigonometry such as obtaining inverse, solving simultaneous equations, evaluating expansions of sines and cosine series.

Program Outcome: Students learned elementary knowledge of Calculus (Differential& Integral). They also learned Matrix operations, trigonometry and three dimensional geometry. Student learned interactive computation, Plotting of Graphs using MATLAB Software.

Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809 Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr. K. B. GaccheDepartment: MathematicsProgram: BSc FY Sem-IISubject: MathematicsCourse Code: CCM-2 Section APaper Title: Calculus-II (Integral Calculus)Paper No.: III

Unit No.	Unit Name	Topics	Unit-wise Outcome
1	Integration of Algebraic Rational Functions	Methods of Integration, Partial Fractions, Non- repeated linear factors only in the denominator, Linear or quadratic non-repeated linear factor, Reduction formula, Integration of algebraic rational functions by substitution.	Can understand concept of integration of algebraic rational functions. Student's are able to apply method of integration to find the integral of function.
2	Integration of Irrational Algebraic Functions	Integration of $1/(ax^2+bx+c)^{1/2}$, Integration of $(ax^2 + bx + c)^{1/2}$, Integration of $(px+q) / (ax^2 + bx + c)^{1/2}$, etc. Integration by Rationalisation, Integration of $x^m(a+bx^n)^p$, where m, n and p are not necessarily integers, Reduction formulae	Can understand concept of integration of algebraic irrational functions. Will be able to solve problems using reduction formulae.
3	Integration of Transcendental Functions	Reduction formulae, Integration of sin ^m xcos ⁿ x; Reduction formulae, Definite Integrals, Definition, Properties of definite integral, Definite Integral as the Limit of a Sum.	Student Solve examples of definite integrals using Properties of definite integrals. Student obtains the area and volume of given curves.
4	Beta, Gamma Functions and Multiple Integrals	Gamma Function, A Fundamental Property of Gamma Function, Product of two Integrals, Beta Function, Relation between beta and gamma function, Integrationof sin ^{2m-1} t cos ^{2m-1} t, Double integrals, Area bydouble integration, Volume under a surface, Polar coordinates , Evaluation of double integral (statement only), Change from cartesian to Polar Coordinates.	Student understands concept of Gamma and Beta Functions. Student Solves problems on Multiple Integrals.

Course Outcome: Student apply methods to find Integration of Algebraic Rational & Irrational Functions, Transcendental Functions for solving examples. Students also analyze Gamma and Beta Functions, Multiple Integral and Apply integration to find Area and Volume.

Program Outcome: Students learned elementary knowledge of Calculus (Differential& Integral). They also learned Matrix operations, trigonometry and three dimensional geometry. Student learned interactive computation, Plotting of Graphs using MATLAB Software.

Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809 ro-forma for program and course outcomes (2.6.1)

Name of Teacher: K. B. GaccheDepartment: MathematicsProgram: BSc FY Sem-IISubject: MathematicsCourse Code: CCM-2 Section BPaper Title: GeometryPaper No.: IV

Unit	Unit Name	Topics	Unit-wise Outcome
No.			
1	Co-ordinates and Transformation of Co-ordinates	Direction cosines of a line, relation between direction cosines, Projection on a straight line, projection of a segment on another line ,projection of the join of two lines. Angle between two lines. Change of origin, change of the direction of a axes, relation between direction cosines of three mutual Perpendicular lines.	Student understands concepts of Three Dimensional Geometry. Student can find the Direction cosines of any line under the different given conditions .Also find angle between two lines.
2	The Plane	General equation of first degree, Transformation to the normal form, angle between two planes, determination of plane under given conditions, plane through three points, system of planes, two sides of a plane, length of perpendicular from a point to a plane, bisectors of angle between two planes.	Student's are able to find equations of Planes. Student transforms the equation of a plane to the normal form,find the bisectors of angle between two planes.
3	Right line	Representation of line, equation of line through a given point drawn in a given direction,two forms of the equation of line, Transformationfrom the unsymmetrical to the symmetrical form, angle between a line and a plane, coplanar lines, condition for coplanarity of lines, the shortest distance between two lines, length of the perpendicular from a point to a line.	Student finds equations of straight lines. Student transforms equation of line from the unsymmetrical to the symmetrical form, finds shortest distance, length of perpendicular from a point to a line.
4	Sphere, Cones and Cylinders	General equation of a sphere, The sphere through fourgiven points, plane section of a sphere, intersection of two spheres, sphere with agiven diameter, equation of a circle, equation of a tangent plane, planeof contact, angleof intersection of two spheres. Cones, cylinders: Definition, equation of a cone, the right circularcone, definition, the cylinder, equation of a cylinder, the right circular cylinder.	Student can find equations of Spheres, Cones and Cylinders. Student's are able to find the angle of intersection of two spheres.

Course Outcome: Student understands concepts on Three Dimensional Geometry. Student applies methods to solve examples on obtaining equations of plane, right line, cylinder, cone and sphere. **Program Outcome:** Students learned elementary knowledge of Calculus (Differential& Integral). They also learned Matrix operations, trigonometry and three dimensional geometry.Student learned interactive computation, Plotting of Graphs using MATLAB Software.

Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809 Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr.K. B. GaccheDepartment: MathematicsProgram: BSc FY Sem- I &II Subject: MathematicsCourse Code: CCMP-1Paper Title: PracticalPaper No.: V

Unit	Unit Name	Topics	Unit-wise Outcome
No. 1	Introduction to MATLAB	MATLAB Programming language, Built-in Functions, Graphics, computations, External interface and Tool boxes. Basics of MATLAB, MATLAB windows, desktop, command window, workspace, Figure and Editor Windows, Input- output, File types, platform dependence, Printing. Programming in MATLAB: Scripts and14 functions. Script files, function files, Executing of function, writing good functions, sub functions, compiled functions.	Student learns basics of MATLAB language. Student learns various MATLAB commands.
2	Interactive computation :	Matrices and Vectors, input, indexing, matrix manipulation, creating vectors. Matrix and Array operations, Arithmetic operations, Relational operations, logical operations, Elementary math functions, matrix functions, character string. Command-line Functions, Inline functions, Anonymous functions. Built-in functions, finding the determinant of matrix, finding Eigen-values and eigenvectors. Saving and loading Data, Importing data tales, recording a session. Applications: - Linear Algebra. Solving a linear system, Gaussian elimination, Finding Eigen values and eigenvectors, matrix factorization, advanced topics.	Student verifies associativity of matrix addition, left distributive law and right distributive law of matrices. Student finds determinant, Eigen values, Eigen vectors, inverse, powers and characteristics polynomial of a square matrix.
3	Plotting of Graphs	Plotting simple Graphs. Graphics: - Plotting of 2D graphs, Using subplot for multiple graphs, 3DPlots (Drawing of different Geometrical objects), saving and Printing.	Student plots the graph of different functions with the help of MATLAB software. Student draws 3D objects using MATLAB software.

Course Outcome: Student studied MATLAB software and its application to solve problems in matrices and to plot the graphs of different functions.

Program Outcome: Students learned elementary knowledge of Calculus (Differential& Integral). They also learned Matrix operations, trigonometry and three dimensional geometry. Student learned interactive computation, Plotting of Graphs using MATLAB Software.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: K. B. GaccheDepartment: MathematicsProgram: BSc SY Sem-IIISubject: Mathematics Course Code: CCM-3 Section APaper Title: Real Analysis-IPaper No.: VI

Unit	Unit Name	Topics	Unit-wise Outcome
No.			
1	Sets and Properties	Field structure and order structure, Bounded and unbounded sets, Supremum, Infimum, Order completeness in R, Archimedean property of real numbers, Dedekind's Property, Complete-ordered field, Representation of real numbers as points of a straight line, Neighbourhood of a point, Interior point of a set, Open set, Limit point of a set, Bolzano-Weierstrass theorem, Closed sets, Closure of a set, Dense sets, Some important theorems, Countable and uncountable sets.	Student understands the basic concepts of sets and their properties. Student can find supremum, infimum and limit points of given sets. Recognizes countable and uncountable sets.
2	Real Sequences	Sequence, Range set, Bounds of a sequence, Convergence of sequences, Some theorem, Limit point of a sequence, Existence of limit points, Convergent sequences, Cauchy's general principle of convergence, Cauchy's sequence, Algebra of sequences, Some important theorem, Monotonic sequences, Subsequences.	Student will be able to prove Cauchy's general principle of convergence. Student uses various results to check the behavior of given sequences.
3	Infinite Series	Introduction, Definitions, Necessary condition for convergence, Cauchy's general principle of convergence for series, Some preliminary theorems, Positive term series, Necessary condition for convergence of positive term series, Geometric series, Comparison series, Series with arbitrary terms, Alternating series, Absolute convergence, Rearrangement of terms, Fourier series.	Student understands the concept of convergence of infinite series. Student uses comparison tests to check the behavior of given series.
4	Comparison Test for Series	Comparison test (first and second type), Cauchy's root test, D `Alembert's root test, Raabe's test, logarithmic test, Test for series of arbitrary term.	Student will be able to prove Cauchy's root test, Rabbe's test. Student can solve problems on convergence of series.

Course Outcome: Student understands conceptof open set, closed set, real sequences, subsequences, convergence of sequences, infinite series, convergence of series, comparison tests for series. **Program Outcome:** Student learned elementary knowledge of real sequences, infinite series, various algebraic structures, group theory and ordinary differential equations.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: K. B. GaccheDepartment: MathematicsProgram: BSc SY Sem-IIISubject: MathematicsCourse Code: CCM-3 Section BPaper Title: Group TheoryPaper No.: VII

Unit	Unit Name	Topics	Unit-wise Outcome
No.			
1	Set theory & elementary concepts of Group	Cartesian product of two sets, Functions or mappings, Types of functions, Inverse image of an element, Inverse function, Intervals defined as sets of real numbers, Product or Composite of functions, Some properties of composite of mappings, Binary operation, Relations, Equivalence relations, Equivalence classes, Properties of equivalence classes. Groups: Binary operation on a set, Algebraic structure, definition of group, abelian group, finite and infinite groups, order of an infinite group, General properties of a group.	Student understands the concepts on an equivalence relation. Student checks whether the given set, is a group for the given operation or not.
2	Group of Permutations, Cyclic permutations, Subgroups	Composition table for finite sets, Addition modulo n, Multiplication modulo p; Residue classes of the set of integers, Permutations, Group of permutations, cyclic permutations, Integral powers of an element of a group, Order of an element of a group, Complexes and subgroups of a group. Criterion for a complex to be a subgroup.	Student understands the general properties of groups. Student solves problems on groups.
3	Cosets and Cyclic groups	Cosets, Relation of congruence modulo, Lagrange's theorem, Euler's theorem, Fermat's theorem, Caleys's theorem, Cyclic groups, Some properties of cyclic group, Subgroup generated by a subset of a group.	Student understands the concepts of the cyclic group. Student uses Lagrange's theorem to solve the problems in number theory.
4	Normal groups, homomorphism & automorphism	Normal subgroups, quotient group, homomorphism's of a groups, Kernel of homomorphism, Fundamental theorem on homomorphism of groups, Automorphisms of a group, Inner automorphisms.	Student forms a quotient group. Student finds the kernel of a group homomorphism.

Specify Course Outcome: Student understands concept of group of permutations, cyclic permutations, subgroups, cosets, cyclic groups, normal groups, homomorphism & automorphism. Student uses Lagrange's theorem to solve the problems in number theory.

Specify Program Outcome: Student learned elementary knowledge of real sequences, infinite series, various algebraic structures, group theory and ordinary differential equations.

Dharmabad Shikshan Sanstha's

Lal Bahadur Shastri Mahavidyalaya, Dharmabad-431809

Pro-forma	a for program and	d course outcomes (2.6.1))

Name of Teacher: Mr. K. B. GaccheDepartment: MathematicsProgram: BSc SY Sem-IIISubject: MathematicsCourse Code: CCM-3 Section CPaper Title: Ordinary Differential EquationsPaper No.: VIII

Unit	Unit Name	Topics	Unit-wise Outcome
No.		L L	
1	First order and the first degree differential equations, exact differential equations	Formation of a Differential Equation: Ordinary and partial differential equations, Order and degree, Solution and constant of integration, Equation of the first order and the first degree: Equations of the form $f_1(x)dx+f_2(y) dy = 0$, Homogeneous, Non-homogeneous equations in x and y, Exact differential equations, rules for finding the solution, integrating factors(I.F.), finding I. F. by inspection.	Student understands concepts of solution of a differential equation, order and degree. Student will be able to verify whether the given differential equation is exact or not.
2	Linear differential equations, Clairaut's equation	Rules for finding integrating factors, Linear equations, Equation reducible to the linear form. Equations of the first order but not of first degree: Equations that can be resolved into component equations of the first degree, Equations that can't be resolved into component equations, Equations solvable for y, for x, Equations that do not contain x, that do not contain y, Clairaut's equation.	Student can find the solution of the exact equations, Students can transform non- linear equation to linear equation and solve it. Student will be able to solve Clairaut's equation.
3	Linear differential equations with constant coefficients	Linear equations with constant coefficients: The Complementary Function, The particular integral, The complete solution, The linear equation with constant coefficients and second member zero, auxiliary equation having equal roots, imaginary roots, The symbol D, another way of finding the solution when the auxiliary equation has repeated roots, The linear equation with constant coefficients and a second member a function of x.	Student understands the concept of particular integral& complete solution. Student can find the solution of a differential equations when the auxiliary equations have equal, imaginary roots.
4	Linear differential equations with variable coefficients	Integral corresponding to a term of the form e ^{ax} , x ^m , sin ax or cos ax,e ^{ax} V,xVin the second member Linear Equations with Variable Coefficients: Methods of solution-to find the complementary function, the particular integral, Integral corresponding to a term of the form x ^m in the second member.	Student can find integral corresponding to a term of the form e ^{ax} , x ^m , sin ax in the second member. Student can find the solution of linear equations with variable coefficients.

Course Outcome: Student learns elementary knowledge of ordinary differential equations. Student can solve problems on ordinary differential equations.

Program Outcome: Student learned elementary knowledge of real sequences, infinite series, various algebraic structures, group theory and ordinary differential equations.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: K. B. GaccheDepartment: MathematicsProgram: BSc SY Sem-IVSubject: Mathematics Course Code: CCM-4 Section APaper Title: Real Analysis-IIPaper No.: IX

Unit	Unit Name	Topics	Unit-wise Outcome
No.			
1	Riemann Integral	Introduction, Definition, and existence of the integral, Definitions, Inequalities for integrals, Refinement of partitions, Darboux's theorem, Conditions of integrability, Deductions, integrability of the sum and difference of integrable functions, Integrability of the product, Quotient and the modulus of Integrable functions.	Student understands difference between upper sum & lower sum. Student understands the concept of upper integral & lower integral.
2	Riemann Sum and Some Fundamental Theorems	The integral as a limit of sums (only definitions of Riemann sums), Some applications, Some integrable functions, Integration and differentiation, Fundamental theorem of calculus, Mean value theorems of integral calculus.	Student understands the concept of Riemann sum and Riemann integral. Student solves problems on Riemann integral.
3	Improper Integral- Range of Integration is Finite	Introduction, Integration of unbounded functions with finite limits of integrations, Comparison tests for convergence, Useful comparison integral, Examples, General test for convergence, Absolute convergence.	Student can check the convergence of improper integral using various tests. Student distinguishes between convergence and absolute convergence of improper integral.
4	Improper Integral- Range of Integration is Infinite	Infinite range of integration, comparison tests for convergence at ∞ , Comparison test first and second, Useful comparison integral, General test for convergence at ∞ , Absoluteconvergence, Integrand as a product of functions (convergence at ∞).	Student understands the concept of improper integral with infinite range of integration. Student solves problems on improper integral using comparison integral and general test.

Course Outcome: Student understands concept and learns elementary knowledge of Riemann integral and improper integral. Student will be able to test the convergence using comparison and general tests.

Program Outcome: Student understands concept of Riemann integral, improper integral, ring theory and partial differential equations.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr.K. B. GaccheDepartment: MathematicsProgram: BSc SY Sem-IVSubject: Mathematics Course Code: CCM-4 Section BPaper Title: Ring TheoryPaper No.: X

Unit	Unit Name	Topics	Unit-wise Outcome
No.			
1	Definition, Examples & Elementary properties of a ring	Ring: Definition, Elementary properties of a ring, Integral multiples of the elements of a ring, Examples of rings, Some special types of rings, Integral domains, Field, Division ring or Skew field.	Student checks whether given algebraic structure is a Ring or not. Student learns elementary properties of a ring.
2	Isomorphism of rings, Ideals	Isomorphism of rings, Properties of isomorphism of rings, Subrings, Characteristics of a ring, Imbedding of a ring into another ring, the field of quotients, Ideals, More about ideals, Ideal generated by a given subset of a ring, Principal ideal, Principal ideal ring.	Student understands the concept of ideal and principal ideal of a ring. Student checks whether given two rings are isomorphic or not.
3	Polynomial rings, polynomial over an integral domain and Euclidean algorithm	Divisibility in an integral domain, Units, Associates, Prime elements, greatest common divisor, polynomial rings, Degree of the sum and the product of two polynomials, Ring of polynomials, R as a subset of R[x]; polynomial over an integral domain, Polynomial over a field, Ring of polynomials in n variables over an integral domain, Divisibility of polynomials over a field, Division algorithm for polynomials over a field, Euclidean algorithm for polynomials over a field	Student understands the difference between units and associates. Student solves problems on polynomial rings.
4	Unique factorization domain, homomorphism of rings and Euclidean rings	Unique factorization domain, Unique factorization theorem for polynomials over a field, Quotient rings or residue class rings, Homomorphism of rings, Kernel of a ring homomorphism, Maximal ideal, Some more results on ideals, Prime ideals, Euclidean rings or Euclidean domains, Properties of Euclidean rings.	Student checks whether given two rings are homomorphic or not. Student understands concept on Euclidean rings.

Course Outcome: Student understands concept of rings, isomorphism & homomorphism of rings, ideals and principal ideals, polynomial rings and Euclidean rings.

Program Outcome: Student understands concept of Riemann integral, improper integral, ring theory and partial differential equations.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr. K. B. GaccheDepartment: MathematicsProgram: BSc SY Sem-IVSubject: MathematicsCourse Code: CCM-4 Section CPaper Title: Partial Differential EquationsPaper No.: XI

Unit No.	Unit Name	Topics	Unit-wise Outcome
1	Partial differential equation- basic concepts, Lagrange's linear equations	Partial differential equation (PDE), Order and method of forming PDE, solution of equations by direct integration, Lagrange's linear equations, method of multipliers.	Student can classify PDE. Student uses methods to solve problems on PDE. Student finds solution of PDE by direct integration.
2	Charpit's method, Linear homogeneous PDE	Partial differential equations non-linear in p and q; Charpit's method, Linear homogeneous PDE of nth order with constant coefficients, Rules for finding the complementary functions, Rules for finding the particular integral.	Student solves linear PDE of first and second order. Student uses Charpit's method for solving PDE.
3	Non-homogeneous linear equations	Non-homogeneous linear equations, Monge's method, Method of separation of variables, Equations of vibrating strings, Solution of the wave equation by D'Almbert's method.	Student understands concept of non- homogeneous linear equations. Student solves the wave equation by D'Almbert's method.
4	One-dimensional & two-dimensional heat flow, Laplace equations	One-dimensional heat flow, Two-dimensional heat flow, Laplace equations in polar co-ordinates, Transmission line equations.	Student applies PDE techniques to predict the behaviour of certain phenomena. Student solves problems using boundary conditions.

Course Outcome: Student understands concept of Partial differential equations. Student learns different methods of finding solutions of PDE and are introduced to real-world problems like wave equation, heat equation, etc.

Program Outcome: Student understands concept of Riemann integral, improper integral, ring theory and partial differential equations.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr.K.B. GaccheDepartment: MathematicsProgram: BSc TY Sem-VSubject: Mathematics Course Code: DSEM-5 Section APaper Title: Metric SpacesPaper No.: XII

Unit No.	Unit Name	Topics	Unit-wise Outcome
1	Open and Closed sets	Definition of Metric Space, Examples of Metric Space, Diameter of a nonempty Set. Open and Closed Spheres, Neighbourhood of a Point, Open Sets, Limit Points, Closed Sets, Subspaces, Closure of a Set.	Student understands concepts of open & closed sets. Student can define subspace, closure of a set.
2	Convergence, Completeness, Continuity and Uniform Continuity	Definition, Cauchy Sequence, Cantor's Intersection Theorem, Baire's Category Theorem. Continuity - Definitions, Examples, Theorems on Continuity and Uniform Continuity, Banach Fixed Point Theorem.	Student can verify the convergence of sequences. Student understands concepts of continuity and uniform continuity.
3	Compactness	Definitions and Theorems on Compactness, Heine-Borel Theorem, Compactness and Finite Intersection Property, Relative Compactness, ε-Nets and Totally Bounded Sets, Lebesgue Number for Covers. Separated Sets, Definition and Theorems on Connectedness.	Student understands concept of compactness. Student can verify compactness of given metric spaces.
4	Connectedness	Definition and Theorems on Lebesgue Number for Covers, Separated Sets, Definition and Theorems on Connectedness.	Student understands concept of connectedness. Student can verify connectedness of given metric spaces.

Course Outcome: Student understands concept of open and closed sets. Student verifies the convergence of sequences, completeness compactness and connectedness of given metric spaces.

Program Outcome: Student understands concept of metric spaces, vector spaces and equilibrium of forces & resultant force of forces.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr.K. B. GaccheDepartment: MathematicsProgram: BSc TY Sem-VSubject: Mathematics Course Code: DSEM-5 Section BPaper Title: Linear AlgebraPaper No.: XIII

Unit No.	Unit Name	Topics	Unit-wise Outcome
1	Vector spaces	Vector spaces, Subspaces, Span of a set, More about subspaces, Linear Dependence, Independence.	Student can define vector space, dual space. Student will be able to apply methods to solve examples.
2	Dimension and Basis	Dimension and Basis, Definition and Examples of Linear transformations, Range and Kernel of a linear map, Rank and Nullity.	Student understands concepts of basis, and kernel. Student can find rank of a linear transformation.
3	Linear Transformations	Inverse of a linear transformation, Consequences of Rank-Nullity theorem, The space L(U,V), composition of linear maps, operator equations.	Student understands concepts of inverse of a linear transformation. Student recognizes composition of linear maps.
4	Matrices	Matrix associated with a linear map, Linear map associated with a matrix, Linear operators in $M_{m,n}$, Determinants: Eigen values, Eigenvectors, More matrix theory: Inner product spaces.	Student can associate a matrix with a linear map. Student will be able to find Eigen values and Eigen vectors.

Course Outcome: Students will be able to find dimensions of various vector spaces and by using determinant concept students can solve the linear equations in two, three unknowns.

Program Outcome: Student understands concepts of metric spaces, vector spaces and equilibrium of forces & resultant force of forces.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr. K. B. GaccheDepartment: MathematicsProgram: BSc TY Sem-VSubject: Mathematics Course Code: DSEM-5 Section CPaper Title: Mechanics-I (Statics)Paper No.: XIV

Unit No.	Unit Name	Topics	Unit-wise Outcome
1	Forces Acting on a Particle	Definitions, Law of Parallelogram of Forces, Magnitude and Direction of the Resultant, Deductions, Resultant of Forces, Components and Resolved parts, Algebraic Sum of the Resolved Parts, Magnitude and Direction of the Resultant of any number of Forces.	Student can describe Law of Parallelogram of Forces. Student will be able to define components and resolved parts, finds magnitude and direction of the resultant of forces.
2	Equilibrium of Forces Acting on a Particle	Resultant of Parallel Forces, Triangle law of Forces, Converse of the Triangle Law of Forces, Polygon of Forces, Lami's Theorem.	Student understands concept of resultant of Parallel Forces. Student will be able to explain Triangle law of Forces.
3	Forces Acting on a Rigid Body	Conditions of Equilibrium of Forces acting on a Particle, Moment of a Force, Sum of the Vector Moment of a System of Forces, Sum of the Vector Moments of to like Parallel Forces.	Student understands concept of equilibrium of Forces. Student evaluates examples on Vector Moment of the Resultant Couple of two Couples acting upon a Rigid Body.
4	Forces Acting on a Rigid Body	Couples, Two Couples acting in one Plane upon a Rigid Body, Equivalent Couples, Vector Moment of the Resultant Couple of two Couples acting upon a Rigid Body, System of Forces acting upon a Rigid Body, Conditions of Equilibrium of Forces, Conditions of Equilibrium of Coplanar Forces.	Student understands concept of equivalent couples, vector moment. Student will be able to state Conditions of Equilibrium of Forces.

Course Outcome: Students learns basic, primary knowledge of motion, force and their relations. Studentunderstands the force systems, the concept of motion of particles and rigid bodies.

Program Outcome: Student understands concepts of metric spaces, vector spaces and equilibrium of forces & resultant force of forces.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr. K. B. GaccheDepartment: MathematicsProgram: BSc TY Sem-VISubject: MathematicsCourse Code: DSEM-VISection APaper Title: Complex AnalysisPaper No.: XV

Unit	Unit Name	Topics	Unit-wise Outcome
No.		-	
1	Complex Numbers and Analytic functions	Complex Numbers: Exponential form, Roots of complex numbers, Regions in the complex plane. Analytic functions: Functions of complex variables, Mappings, Mappings by the exponential Function, Limits, Theorems on limits, Limit involving, The point at infinity, Continuity, Derivatives, Differentiation formulae.	Student understands concept of functions of complex variables, limit and continuity. Student finds limits and derivatives of functions of complex numbers.
2	Elementary functions	Analytic functions: Cauchy- Riemann equations, Sufficient conditions for derivability, polar co- ordinates, Analytic functions, Harmonic functions, Elementary functions: The exponential functions, The logarithmic functions, Branches and Derivatives of logarithms, Some identities involving logarithms, Complex exponents.	Student uses Cauchy- Riemann equations for solving problems. Student understands concepts of Analytic functions, Harmonic functions.
3	Integrals	Integrals: Derivatives of functions w(t), Definite integrals of functions w(t); Contours, Contour Integrals, Upper bounds for moduli of contour integrals, Anti derivatives, Simply and Multiply connected domains.	Student can find the integral of a complex variable function. Student understands concepts of numerical differentiation.
4	Integrals and Series	Integrals: Cauchy integral formula, Derivatives of analytic functions, Liouville's theorem and the Fundamental theorem of algebra. Series: Convergence of sequences, Convergence of series, Taylor series, Laurent series.	Student understands concepts of derivatives of analytic functions. Student uses Cauchy integral formula and Liouville's theorem for solving problems.

Course Outcome: Student can find the missing terms in the given data using numerical techniques. Student can apply numerical derivation and numerical integration methods for solving problems. Student can find the solutions of ordinary differential equations.

Program Outcome: Student understands some fundamental ideas of complex analysis, integral transforms, Laplace transforms. Student also gets an elementary knowledge about Topology.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr. K. B. GaccheDepartment: MathematicsProgram: BSc TY Sem-VISubject: MathematicsCourse Code: DSEM-VISection BPaper Title: Integral TransformsPaper No.: XVI

Unit	Unit Name	Topics	Unit-wise Outcome
No.			
1	Laplace Transformations	Introduction, Laplace Transform, Important Formulae, Properties of Laplace Transforms, Laplace Transform of the Derivative of f(t); Laplace Transform of the Derivative of Order n, Laplace Transform of Integral of f(t); Laplace Transform of t f (t), Laplace Transform of 1/t f(t), Unit Step Function, Second Shifting Theorem, Impulse Function, Periodic Functions, Convolution Theorem, Evaluation of Integrals, Properties of Laplace Transform.	Student understands concept of functions of complex variables, limit and continuity. Student finds limits and derivatives of functions of complex numbers.
2	Inverse Laplace Transforms	Inverse Laplace Transforms, Important Formulae, Multiplication by s, Division by s, First Shifting Property, Second Shifting Property, Inverse Laplace Transforms of Derivatives, Partial Fractions Method, Inverse Laplace Transform by Convolution.	Student understands concept of inverse Laplace transform. Student can solve examples on inverse Laplace transforms.
3	Solutions of Differential Equations and Integral Transforms	Solution of Differential Equations by Laplace Transforms, Solution of Simultaneous Differential Equations by Laplace Transforms, Introduction to Integral Transforms.	Student can apply the integral transforms along with their inversion formulae for solving differential equations. Student uses various properties of Laplace transforms for solving problems.
4	Fourier Transforms	Fourier Integral Theorem, Fourier Sine and Cosine Integrals, Fourier's Complex Integral, Fourier Transforms, Fourier Sine and Cosine Transforms, Properties of Fourier Transforms.	Student studies properties of Fourier Transforms. Student uses Fourier Integral theorem for solving problems.

Course Outcome: Student understands the concept of Integral Transforms. Student can identify integral transforms by their integration limits and kernels. Student can apply the integral transforms for evaluating integrals.

Program Outcome: Student understands some fundamental ideas of complex analysis, integral transforms, Laplace transforms. Student also gets an elementary knowledge about Topology.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr. K. B. GaccheDepartment: MathematicsProgram: BSc TY Sem-VISubject: Mathematics Course Code: DSEM-VISection BPaper Title: Mechanics-II (Dynamics)Paper No.: XVII(B)

Unit No.	Unit Name	Topics	Unit-wise Outcome
1	Kinematics and Dynamics of a particle in two dimensions	Introduction ,definitions,expressions for velocity and acceleration,components of velocity and acceleration,tangent and unit vector along the tangent, curvature and principal normal,tangential and normal components of velocity and acceleration,angular speed and angular velocity,angular acceleration,radial and transverse directions, radial and transverse components of velocity and acceleration.	Student will be able to define velocity and acceleration, components of velocity and acceleration, differentiate between normal, tangential and normal components of velocity and acceleration, angular, solves examples depending on it.
2	Kinematics of a particle	Introduction, Newtons laws of motions, Deductions from Newtons laws of motions, matter, mass, weight, linear momentum,moment of momentum or angular momentum, impulsive force and its impulse, conservation of linear momentum, impact of two bodies, work, power, energy.	Student understands concepts of Newton's laws of motion and its importance in physical sciences, analyze the impulsive force and its impulsive.
3	Motion of a projectile and motion in resisting medium	Scalar point function and scalar field, vector point function and vector field,field of force, potential function,rectilinear motion ,motion under gravity.	Studentunderstandsconceptofvariousdefinitionsrequiredtounderstandmotionofprojectile.
4	Motion of a projectile and motion in resisting medium	Motion of projectile and derivation of equation of its trajectory, Cartesian equation of the path of a projectile, vertex and latus rectum of the parabola, velocity of a particle in terms of its height, range on an inclined plane, projectile to pass through a given point, relations $t_1t_2=2R/g$.	Student understands to find the motion of projectile and derivation of its trajectory,path of a projectile.

Course Outcome: Student can understand Newtons laws of motion, understands the expressions of velocity and acceleration, motion in resisting medium.

Specify Program Outcome: Student understands some fundamental ideas of complex analysis, integral transforms, Laplace transforms. Student also gets an elementary knowledge about projections of a particle.